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By adopting a formal operator viewpoint, the space-time characteristic 
functional associated with Navier-Stokes turbulence is expressed in terms of a 
linear operator acting on the space of functionals. Obtained by a simple 
similarity transformation of the local translation operator generated by the non- 
linear terms in the Navier-Stokes equation, this operator is unitary with respect 
to the formal scalar product of functionals. The equivalence of this operator 
representation to the functional integral representation of Rosen is shown and, 
for Gaussian initial velocity and external force fields, some consequences of this 
representation are presented. 
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1. I N T R O D U C T I O N  

The basic  a s sumpt ion  of turbulence  theory  is tha t  the stat is t ical  dynamics  
of  a tu rbu len t  flow is comple te ly  de te rmined  by the jo in t  p robab i l i t y  
measure  associa ted  with r a n d o m  h y d r o d y n a m i c  fields whose real iza t ions  
satisfy the mass,  m o m e n t u m ,  and  energy equat ions  for prescr ibed init ial  
and  b o u n d a r y  condi t ions .  F o r  incompress ib le  fluids with uni form densi ty  
and  viscosi ty the spat ia l  (Euler ian)  veloci ty field u(x,  t) alone  is sufficient to 
specify the fluid mot ion .  Thus,  an explicit  de t e rmina t ion  of the charac-  
teristic funct ional  of  u(x,  t), which incorpora te s  all the f in i te-dimensional  
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statistical observables associated with a turbulent fluid, constitutes a 
central problem for the deductive theory of turbulence. The Navier-Stokes 
dynamics induces a linear evolution equation (Hopf's equation (1)) for the 
space characteristic functional of u(x, t) which simply expresses the preser- 
vation of normalization property of probability measure under this 
dynamics. The exact general solution of this equation for a given initial 
statistical state can be formally represented as a functional integral; 
however, the deduction of relevant physical information from this represen- 
tation is still an unsolved problem. 

Similarly, the space-time characteristic functional of u(x, t) satisfies a 
linear equation and also admits a general integral representation. These 
integral representations can also be derived directly from the 
Navier-Stokes equation without referring to the functional differential 
equations. For boundary-free fluids which are not subject to random exter- 
nal forces, these representations were presented first by Rosen. (2'3) In the 
special cases of zero viscosity or negligible nonlinear interactions, more 
explicit exact expressions for the space and space-time characteristic 
functionals have also been derived under particular statistical restrictions 
by various researchers.(4 6) The functional integral representations 
associated with the Navier-Stokes turbulence can essentially be regarded as 
linear mappings between particular characteristic functionals. Since the 
Navier-Stokes dynamics is not measure preserving in the phase space 
corresponding to u(x, t) due to viscous dissipation, a unitary linear 
operator cannot be associated with the evolution of fluid turbulence. 
However, by adopting an operator viewpoint, it is possible to express the 
space-time characteristic functional of u(x, t) exactly, and explicitly, in 
terms of a functional linear transformation which is formally unitary with 
respect to a particular scalar product in the space of functionals, as shown 
in this paper. This expression is valid for any admissible prescribed 
statistics of the initial velocity and external force fields and can be inter- 
preted as a perturbation expansion in powers of a particular Reynolds 
number. 

Here only the fluids without boundaries are considered, although the 
boundary conditions and geometries can be incorporated into the 
formalism without essential changes. The universal, stationary, small-scale 
characteristics of a turbulent flow can be specified without dealing with 
boundaries and initial statistics by working with a boundary-free and exter- 
nally driven fluid. In Section 2, a formal series representation for the linear 
operator which connects the space-time characteristic functionals of linear 
and actual turbulent flows is derived through a simple similarity transfor- 
mation. The connections to Rosen's functional integral representation (3) are 
also shown in this section. Section 3 contains, for Gaussian initial velocity 
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and driving force fields, some simple consequences of this operator 
representation. 

2. THE SPACE-T IME OPERATOR FOR TURBULENCE 
STATISTICS 

The laminar and turbulent motions of boundary-free incompressible 
fluids are specified by the Navier-Stokes equation~7): 

~ + ( u . V )  u - r ~ u + V p = f ,  ul,=,o=Uo(X), Vu0=0 (1) 

where x = ( x  a, x 2, x 3) is the (Cartesian) position vector of a point in 
Euclidean space R 3, u - u(x, t) is the spatial velocity field, p =_ p(x, t) is the 
(modified) pressure, v is the kinematic viscosity coefficient, and f - f  (x, t) is 
the external volume force density, which can be prescribed as divergence- 
less without loss of generality. The solution set of (1) consists of solenoidal 
vectors only, since the condition Vu o = 0 implies Vu = 0  for t > to. The 
statistical turbulence problem associated with (1) is simply the deter- 
mination of the space-time characteristic functional 

(2) 

from the prescribed functionals 

Z~(O)=fe~~176 dxO(x).uo(X)}l (3) 

and 

Ze(rl)=fei'"'Z)d~(f)=-(exp{if dzrl(z).f(z)}) (4) 

where z = (x, t), q(z) and O(x) denote the test vector fields, the dot is the 
usual vector product, and the x and z integrations are over entire R 3 and 
R3• [to, ~ ) ,  respectively. The pressure field can be eliminated from (1) by 
applying the incompressibility condition and solving the resulting Poisson 
equation and one can recast (1) into an integral form with the help of heat 
kernel associated with R 3 as 

u~(z) = v'(z) + f dzl C~e~(z - zl) ue(zl) uT(zl) (5) 
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where 

v(z)=fdxlG(x-xl ,  t-to) Uo(Xl)+fdzlG(z-zl)f(z~) (6) 

!4gY) 3/2 exp(--lxl2/4vt), {o, G(z) 

1.( ~ 6~r~)G(z) c~B~(z) = - ~ \ 6 ~  ~x~ + 

G(xl, t) x f  dx~ 
4zt Ix-x1[ 

t>O  

t<O  

(~3 

8x~OxBSx ~ 

(7) 

(8) 

for t > to, and C~p~(z) vanishes for t ~< to [further properties of C,~(z) can 
be found in ref. 8 ]. 

The velocity field v(z) is solenoidal and its characteristic functional 

Zo(q)=fe~("'~)dt~o(V)=Iexp{ifdzq(z).v(z)tl (9) 

is completely determined in terms of independently prescribed statistics of 
Uo(X) and f(z) as 

(10) 

Thus, the Navier-Stokes turbulence problem, as stated above, reduces 
to the explicit determination of Z(r/) in terms of Zo(r/). To this end, let us 
write Eq. (5) as 

u(z) = v(z) + 2Q(u; z) (11) 

where the quadratic functional Q(u;z)=(Ql, Q2, Q3) represents the 
integral term in (5) and the real parameter 2 tags this term. Now we can 
treat (11) as a one-parameter nonlinear mapping between solenoidal 
vector fields, so that by restricting the admissible sets of Uo(X ) and f(z) 
(and the time interval if necessary) to those for which Eq. (11 ) has a unique 
solution u(z) for a given v(z), one may introduce the mapping T: u ~ v = 
u-2Q(u)=T(u) and its inverse T l : v~u-T- l ( v )  which solves the 
Navier-Stokes equation. In turn, T induces a linear transformation T on 
the space of functionals of vector fields u such that, by definition, 
(TF)(u) = F(T(u))- F(u- 2Q(u)) for an arbitrary functional F(u). Clearly, 
for 2 = 0 T and T are identity mappings in their corresponding spaces. The 
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functional determinant det(T) of mapping T, which can be formally 
expressed as exp{Trln(1-26Q/6u)} ,  is equal to 1 since the linear 
operator corresponding to kernel 

6Q~(zl)/au~(zz) = 2c~er(z 1 - z2) ur(z2) 

�9 (3) and its powers are traceless. This implies that the operator ~ is formally 
unitary with respect to the scalar product of two functionals F and G 
defined by 

(F, G) = f d(u) F(u) G(u) (12) 

where the overbar denotes complex conjugation and the formal measure 
d(u) corresponds to the space-time lattice approximation of vector fields by 
step functions, (6) namely 

(.Vol(f2j)'] 3/2 
d ( u ) = l i m O \  2re J duj (13) 

In (13), Vol(f2j) is the volume of space-time cell f2j in which u(z) is 
approximated by 

/-/j = ] - V o l ( ~ j ) ]  1 fg2j dz hi(Z) 

Since d(T(u))= rdet(T)l d(u)= d(u), we have 

(F, TG) = (T-~F, G) (14) 

which evidently implies (i?F, if"G) = (F, G). 7 ~ has a simple formal series 
representation which can be regarded as an ordered exponential operator, 
namely 

( -  ,~ )~ 

n>~O 
6 6 

• ...Q~,(u; ~,) 6u~(z ') 6u~"(z~) 
(15) 
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and a direct calculation also leads to the representation of the inverse if'- 1 
of 2? as 

T-1 = expL {2 (6~, Q(u))} 

= E ' 

n>~O 

x Q~,(u; zi)"-Q~.(u; z,,) (16) 

Now, if we formally set dl~(u)= P(u)d(u) and dido(U)= Po(u)d(u), it 
follows from 

P(u) -- Met( T)[ Po( T(u) ) = ( TPo)(U) 

and the definitions of Z(t/) and Zo(r/) that 

Z(q) = (P-  l~PZ0)(~/) (17) 

where F is the Fourier operator defined by 

(FF)(~) = f  d(q') e i("'n')F(q') (18) 

and F-1 is the inverse of P given by 

(P = f d(q') ei(n'"')F(rl ') (19) lF)(q) 

The operator 10 is unitary with respect to the product (12); consequently, 
the statistical solution operator 

_- p -  1 if'fi = p - l e ,  ~ x(e(.), 0/o.)p (20) 

for Z(t/) is also unitary for all values of 2. In this sense, Z01) and Zo(t/), 
representing nonlinear and linear turbulent flow statistics, respectively, are 
unitary transformations of each other. An explicit representation of 
operator S, a similarity transformation of if', is provided by the following 
proposition: 

If T and F are defined by (TF)( t l )=F(t l -2Q(t l ) )  and (18), respec- 
tively, and d e t ( T ) = d e t ( 1 - 2 6 Q / & l ) = l ,  then o ~ = p - I T p  has the 
representation 
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= 2 
n>~O 
x q=~(z~).., q="(z,) (21) 

This can be verified directly by using definitions (15) and (18) and the 
simple properties of functional integrals; it can also be shown that the 
operator 

a 

= 2 n! J 

~ 6 
• (22) 

satisfies ~.~--1=~--1~=~ for all 2, where T is the identity operator. By 
substituting (21) into (17), we get the final expression for Z(t/) in terms of 
Zo(t/) as 

or, explicitly, 

(23) 

,>~1 n! ... dzl dz'l . . .dzn dz'n i C=~ek~k(Zk--Ze) 

(52 ~2 

{ 6tl~l ( z'l F~q ,, ( z'l ) " " 6tl ~.( z'n ) 6q 'n( Z 'n ) } 

x {k~I~ 1 ~/~k(Zk)} Zo(t/) (24) 

This 2 expansion is essentially in powers of a particular Reynolds number 
which can be interpreted as an interaction constant. Specifically, in terms of 
the dimensionless variables x/lo, U/Vo, and tv/l 2 we have 2 =lovo/V =-Re. 
Here lo and Vo can be, for example, the integral and rms velocity scales 
associated with v(z) or Uo(X ), respectively. The more refined Reynolds num- 
ber expansion schemes, as well as the direct expansion (24), are likely to 
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yield unsatisfactory convergence and analyticity properties for physically 
relevant Re's; the careless truncations of (24) may also lead to unphysical 
behavior. 19) However, (24) provides a standard which can be used to assess 
the validity of a statistical approximation in turbulence theory. 

Now we define the kernel (i.e., "matrix element") S(rl, r/') of S as 

S(r/, ~/') = S6(q - r/') = S f d(6o)e '(~ "') (25) 

where S acts on the t/dependence of the delta functional (6) only. This, from 
(21), directly gives 

S(rl, q') = ~ d ( ~  ) e i('~ + i:'(u''Q(c~ (26) 

The inverse kernel S-l(~/,r/') corresponding to ~-1, by definition, 
satisfies 

I d(~/") S-l(t/ ,  t/") S(r/", q ' )=  I d(q") S(q, q") S- ' (q" ,  r/ ')= 3 ( q -  r/') (27) 

and is easily determined from the unitarity property S-I(/~, ~')= S(?]', Y]) as 

S-1(~/, ~/,) = ~ d(~) e i(~'" - ,7')-i:.(,, e(o~)) (28) 

By substituting (26) into the relation 

z( , )  = (gz0)(~) = I d(n') S(U, ~') Zo(n') (29) 

we obtain the integral form of (24) as 

Z(  q ) = f f  d(q ' )  d( t f ' )  Zo(q') e i(':''T- r + i~(,', o(r (30) 

which, for the case of f (z )  -- 0, is equivalent to that of Rosen. (3) [Note that 
the Gaussian ~/" integration in (30) can be formally performed; this has 
been done by Rosen, whose expression also incorporates an undetermined 
function to account the possible nonuniqueness of solutions of Eq. (1)]. 

Finally, for very small Reynolds numbers one may write 

g '~ 1 -- is ,~-a ~ 1 + i212I (31 ) 
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where the operator /J  is formally Hermitian (self-adjoint) with respect to 
(12), that is, ( F , / ~ G )  = (/~F, G> for arbitrary functionals F a n d  G, and is 
explicitly given by 

82 

[~= ff  dzl dz2 Ca~(zl - z2) (~r]13(z~-~rlT(z2)) rl:~(zl) 

82 
=If dzl dz2 Ca&(zl-z2) rl~(Zl) (Srl~(z2) Srl'(Zz)) (32) 

3. G A U S S I A N  IN IT IAL S T A T E S  A N D  D R I V I N G  F O R C E S  

To illustrate some consequences of (24) briefly, let us prescribe Uo(X) 
and f(z) as Gaussian random fields with zero means and covariances 
(u~(xl) Uo~(X2)) =M~(xl,  x2) and (f~(zl)f~(z2)> =F~t3(zl, z2) , respec- 
tively. It follows from the linearity of v(z) in Uo(X) andf (z )  that v(z) is also 
Gaussian with zero mean. Thus, from (10) we have 

1 A~/)] 
Zo(r/) = Z6(q) = exp I - 2 (q' 

~exp{--~f;dzldZ2mafl(z1,z2)~c~(z1)~f(z2)} (33) 

where A~B(z ~, z2) is the symmetric and positive-definite (nonnegative) 
covariance of v(z) which is determined by 

A~(zl, z2) = f; dx3 dx4 M~(x3, x4) G(xl - x3, tl - to) G(x2 - -  X 4 ,  t2 - to) 

+ f f  dz3 dz 4 F.~fl(z3, z4) G(z I - z3) G(z2 - z4) (34) 

In terms of the measures ~ and/~o--/~G, (33) implies 

d]----~ (u) = exp 2(Q(u),A-Iu)--~(Q(u),A-1Q(u)) (35) 

where A~l(Zl, z2) is the inverse of A~(zl, z2) which satisfies 

I dz3 A~a(zl, z3) A~p(z3, z2) 

= fdz3A~7(Zl,Z3) A~l(z3,zz)=8~6(zl-z2) (36) 
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and 

(Q(u), A 1/2) ~-- f f  dz dz: dz3 A~l(zi, z2) 

X C~yb(Z 1 --Z3) /,/fl(Z2) UY(Z3) Ub(Z3) 
(37) 

(Q(u), A tQ(u))=- f ... f d z 1 . .  .dz4  A~31(gl ,  Z2) 

X CrxT6(Z 1 -- 2"3) Cfluv(Z 2 -- Z4) 

X b/~'(Z3) U6(Z3) U/I(Z4) uV(z4) (38) 

Consequently, from (35) 

Z(rl  ) = f ei(,7,u)+ z~(u) dpa(U)  (39) 

where V;.(u) is the exponent in expression (35). The relations (35) and (39) 
are exact but they involve A~al(zl, z:) and (39) is a nontrivial integration 
over the Gaussian measure #a. Formally, one may also write (39) as 

Z(t 1 ) = e v~.(6/i6*l)e - (7, Arl)/2 (40) 

or  

1 1 6 Z(rl ) w- {exp l - -~ (i-~q, A - ~-~ ) ] } W;~ (rl ) (41) 

where W~(q)is the (inverse) Fourier transform of exp{ V~(r/)}, which is not 
explicitly known. Expressions (40) and (41) correspond to "weak" and 
"strong" coupling expansions of Z(r/), respectively/t~ Note that the 
relation (40), or its general version 

(42) 

mathematically is very different from (23); the operator in (42) depends on 
the prescription of Zo(r/), as opposed to the generic nature of S in (23), 
which is valid for all admissible Zo(q)'s. Here we will use the expression 
(23) foi" Zo(r/)= Zc(~/) as 

Z(r/) = e~ (Q(~/ia~), ~ )e - ("' A,)/2, (43) 

a quantity that does not involve A~t(zl ,  Z2) or  a functional integration, 
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and express the first-order terms in a corresponding 2 expansion of the 
n-point space-time probability density function P ,  of u(z). The Pn is 
simply the (ordinary) Fourier transform of a particular restriction ~b, of 
Z(r/), namely 

P n ( U l , . . . ,  ~tn; Z 1 , 0~1 ..... Z n, Otn) 

= ( 2 r 0  " f . . . f d y , . . . d y n e x p ( - i s  ykuk) 
k = l  

x r Y~; zl, 0~i,'", Zn, O~n) (44) 

with 

~b,(Yl ..... Yn; zl, el ..... z,, ~,) = Z(r/) I~,=zk yk~,k~(~_~ ) (45) 

in which zk - (xk, tk) e R 3 X r/o, o o ) ,  U k and Yk ~ R, and e~ ~ { 1, 2, 3 } for 
1 ~< k ~< n, n = 1, 2 ..... Physically, Pn corresponds to the joint probability for 
a set of n statistical measurements of u(z) in a turbulent flow field such that 
the kth measurement consists of the measurement of the ek component of 
u(z) at time tk and position xk, that is, 

P n ( U l  ..... Un; Z1, O~ 1 ,..., Zn,  O~n) du~ ... dun 

= Prob uk < U~k(Zk) < uk + duk (46) 
k 1 

Up to first order in 2, from (43) [or, equivalently, from the simpler 
relations (31)and  (32)], we obtain 

Z(~I)=e-("'A")/2 {1 + i2 f f  dz 1 dz 2 Co~fly(z1-z2) ApT(z2, z2) rl'(Zl) 

- i2  f ' f dz,...dzn 

x A~(z2, z4) q~(z,) qa(z3) ~/~(z4) 

+ O(2Z)t (47) 

The substitution of this last relation into (45) and the relation (44) directly 
give 
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where 

P n ( U l  , ..., un ; z l , c~1,..., z , ,  ~n)  

= P ~ - 2  B~(zk) Ouk 

~3PG 
-]- ~ BockCtlO~m(Zk' -7l, Zm) OUk~UlOblm j "Jr- 0(2 2) 

k, l, m 

B~(zl) = f dz C~p~(Zl - z) Ar , z) 

(48) 

(49) 

B~/37(Zl' Z2' Z3) = f dz Cefie(z 1 - z )  AI16(22, z )  ATe(z3, z) (50) 

and PG is the multivariate Gaussian probability density function 

pa=(2rc) n / 2 ( d e t A ) - m e x p ( _ l ~ A s  ] (51) 
2k, l ~' / 

which corresponds to the n-point characteristic function 

{ l ~ A , ~ , ( z k ,  z , ) y k y , }  (52) ~b a=exp  --Sk,/ 

Similarly, the coefficient of 2 for the moments (correlation functions) of 
u(z) follow from (47) by using 

, -6~--Z-[r/) ~ (53)  
(U'I(z1)''" U~n(Zn) ) ~- ( - -  i)" 6n ' (z l )""  6n ~ . = o 

This leads to a result which is identical to the one generated by the usual 
iterative approximation of Eq. (11). 

Finally, for the space characteristic functional q~(0, r ) = Z ( O 6 ( t - z ) )  
(to< v < oo) of u(z), which carries information about the simultaneous 
statistics only, one can write 

t l  + i2 II axl az2 c~,(Xl - x2, ~ -  t2) A~,(z~, z~) O~(Xl) ~(0, ~ e - -  EO~AO~/2 

x C~7(x 1 - x 2 ,  r - t2) A~(z2, x3, ~) A~(z2, x4, ~) 

x O~(x~) O~(x3) O~(x4) + 0(~)~  (54) 
J 
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where 

EO, AO] =- f~ dxl  dx2 A ~ ( x l ,  ~, x2, ~) O~(xl) 0~(x2) 
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4. C O N C L U D I N G  R E M A R K S  

Significant advances have been made in the last 15 years in the 
rigorous functional approach to the statistical theory of fully developed 
fluid turbulence (11-18) as well as in more formal exact treatments of Hopf's 
equation. (19) Almost all of these works involve a "space" framework in 
which the Navier-Stokes equation and its statistical version, the Hopf 
equation, are regarded as evolution equations in corresponding abstract 
spaces; the space-time approach is rarely employed. (2~ Clearly, a complete 
statistical description of fluid turbulence requires a space-time point of 
view, since the actual fluid flows demonstrate both temporal and spatial 
randomness, and the functional Liouville equation associated with the 
Navier-Stokes dynamics cannot directly account for nonsimultaneous 
statistics. The formal unitary operator technique presented here is possible 
only within the space-time framework because it allOws one to utilize 
Yr ( fQ /~u)  n --0 for n~> 1, which leads to de t (T)= 1. 

Within this space-time operator approach the incorporation of 
random external forces is straightforward without restrictions on their 
statistics. In the evolutionary functional differential equation approach only 
the Gaussian external forces with delta correlations in time give a closed 
single equation, ~2~) while Gaussian forces with arbitrary correlations or 
arbitrary (non-Gaussian) forces lead to difficulties. The series represen- 
tation (24) is also more transparent than the corresponding functional 
integral representation in assessing the effects of nonlinear interaction term 
Q(u; z)  on the prescribed statistics Zo(~/), and it yields the explicit rules for 
a graphical analysis of Z(q).  
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